
1. Capillary rise method

This is the oldest method used for surface tension determination. 

A consequence of the surface tension appearance at the liquid/gas interface is moving up

of the liquid into a thin tube, that is capillary, which is usually made of glass. 

This phenomenon was applied for determination of the liquid surface tension. 

For this purpose, a thin circular capillary is  dipped into the tested liquid. 

If the interaction forces of the liquid with the capillary walls (adhesion) are stronger than

those between the liquid molecules (cohesion), the liquid wets the walls and rises in 

the capillary to a defined level and the meniscus is hemispherically concave. 



In the opposite situation the forces cause decrease of the liquid level in the capillary 

below that in the chamber and the meniscus is semispherically convex. Both cases 

are illustrated in Fig. 11.1

Fig. 12.1. Schematic representation of the capillary rise method.

If the cross-section area of the capillary is circular and its radius is sufficiently small, 

then the meniscus is semispherical. Along the perimeter of the meniscus there acts a

force due to the surface tension presence.

θγπ cosrf 21 =

Where: r – the capillary radius, γγγγ – the liquid surface tension, θθθθ – the wetting contact angle.

(1)



The force f1 in Eq.(1) is equilibrated by the mass of the liquid raised in the capillary to 

the height h, that is the gravity force f2. In the case of non-wetting liquid – it is lowered 

to a distance –h. 

(2)

where: d – the liquid density (g/cm3) (actually the difference between the liquid and the 

gas densities), g – the acceleration of gravity.
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In equilibrium (the liquid does not moves in the capillary) f1 = f2 , and hence
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If the liquid completely wets the capillary walls the contact angle θθθθ = 0o, and cosθθθθ = 1. 

In such a case the surface tension can be determined from Eq. (5).
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If the liquid does not wet the walls (e.g. mercury in a glass capillary), then it can be 

assumed that θθθθ = 180o, and cosθθθθ = -1. As the meniscus is lowered by the distance -h, Eq.

(5) gives a correct result.

Eq. (5) can be also derived using the Young-Laplace equation,             , from which it 

results that there exists the pressure difference across a curved surface, which is called

capillary pressure and this is illustrated in Fig. 12.2.  

On the concave side of the meniscus the pressure is p1. The mechanical equilibrium is 

attained when the pressure values are the same in the capillary and over the flat surface. 

In the case of wetting liquid, the pressure in the capillary is lower than outside it, (p2 < p1). 

Therefore the meniscus is shifted to a height h when the pressure difference ∆∆∆∆p = p2 - p1

is balanced by the hydrostatic pressure caused by the liquid raised in the capillary.
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Fig. 12.2. The balanced pressures on both sides of the meniscus. 
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Similar considerations can be made for the case of convex meniscus (Fig. 12.2).
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2. Drop volume method – stalagmometric method

The stalagmometric method is one of the most common methods used for the 

surface tension determination. 

For this purpose the several drops of the liquid leaked out of the glass capillary of 

the stalagmometer are weighed. 

If the weight of each drop of the liquid is known, we can also count the number of 

drops which leaked out to determine the surface tension. 

The drops are formed slowly at the tip of the glass capillary placed in a vertical 

direction.

The pendant drop at the tip starts to detach when its weight (volume) reaches the 

magnitude  balancing the surface tension of the liquid. 

The weight (volume) is dependent on the characteristics of the liquid.



Fig. 12.2. Stalagmometer and the stalagmometer tip.

This method was first time 

described by Tate in 1864 who 

formed an equation, which is now 

called the Tate’s law. 

γπ rW 2= (9) 

Where: W is the drop weight, r

is the capillary radius, and γγγγ is 

the surface tension of the 

liquid.

The stalagmometric method



The drop starts to fall down when its weight g is equal to the circumference (2πr) 

multiplied by the surface tension γγγγ. 

In the case of a liquid which wets the stalagmometer's tip the r value is that of the outer 

radius of the capillary and if the liquid does not wet – the r value is that of the inner 

radius of the capillary (Fig. 12.3).

Fig. 12.3. The drops wetting area corresponding to the 

outer and inner radii of the stalagmometr's tip.



In fact, the weight of the falling drop W' is lower than W expressed in Eq.(9). This is a 

result of drop formation, as shown in Fig.12.4. 

Fig. 12.4. Subsequent steps of the detaching drop

Up to 40% of the drop volume may be left on the stalagmometer tip. Therefore a 

correction f  has to be introduced to the original Tate's equation.

fr'W γπ2=

Where: f expresses the ratio of W’/ W.

(10)

Harkins and Brown found that the factor f is a function of the stalagmometer tip 

radius, volume of the drop v, and a constant, which is characteristic of a given 

stalagmometer, f = f (r, a, v)     
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The f values for different tip radii were determined experimentally using water and 

benzene, whose surface tensions were determined by the capillary rise method.

They are shown in Table 1.

Tabeli 1. Values of the factor f

r/v1/3 f r/v1/3 f r/v1/3 f

0.00

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

(1.000)

0.7256

0.7011

0.6828

0.6669

0.6515

0.6362

0.6250

0.6171

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.6093

0.6032

0.6000

0.5992

0.5998

0.6034

0.6098

0.6179

0.6280

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

0.6407

0.6535

0.6520

0.6400

0.6230

0.6030

0.5830

0.5670

0.5510

It appeared that the factor f changes the least if:

2160 31 .v/r. / 〈〈

In practice, after having determined the mean weight m of the liquid drop calculated from 

several drops weighed, one can calculate its volume at the measurement temperature if 

the liquid density is known, and then the value of r/v1/3. Next the f value can be found in 

the table. Finally, the surface tension can be calculated from Eq. (10) where W' = m g.
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The f value depends also on the kind of liquid tested. 

Therefore the relative measurements (in comparison to another liquid of known 

surface tension) can not be applied here, that is,  γγγγ can not be calculated from the 

ratio of the weights of two drops of two liquids and known surface tension of one of 

them. 

However, such measurement can be done with 0.1 % accuracy if the shape of the 

stalagmometer tip is like that shown in figure 12.5.

Then:
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Fig. 12.5. Shape of the stalagmometer tip for relative 

surface tension measurements.

Then:
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Having known the drop volume the surface tension can be calculated from Eq. (14).
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